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Abstract Extended function spaces defined over the real field are defined as vector
spaces made by the Cartesian product of a real Euclidian space and a real function
space. This construct is related to the Holographic Electronic Density Theorem and
to the stereographic projection of quantum chemically related and well behaved func-
tions in general. It permits to establish the basis for the Holographic General Function
Theorem.
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1 Introduction

Recently, it has been published some work on the stereographic projection of density
functions (DF) [1]. The present study pretends to enlarge and provide more informa-
tion about some of the ideas employed in this previously mentioned paper. Essentially,
the aim of the present theoretical development is to describe the structure and prop-
erties of a new kind of vector spaces, which were named function extended spaces
(FES) in the article of reference.

FES were just loosely described in reference [1] because the aim of this previous
paper was to demonstrate the possibility to represent quantum mechanical functions
of chemical interest, like density functions or electrostatic potential maps (EMP)
[2], within a stereographic projection point of view, allowing in this manner the
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representation of such function fields in a potential dynamical way, among other pos-
sibilities. Stereographic projections, for instance, are well adapted to any molecular
shape, including the quasi spherical structures associated to buckminsterfullerene.

In order to accomplish the indicated task of extending and clarifying the concept of
FES, the present paper will be organized in the following way. First, a brief descrip-
tion of those spaces will be given adapted to quantum mechanical DF, then a simple
example of such FES structure will precede the axiomatic description of FES. Then,
gradient spaces will be taken as an application of the powerful FES description and this
step will be followed by the connection between FES, stereographic projections and
the holographic features which can be in general attached to well-behaved functions as
an extension of Mezey’s holographic DF theorem [3–5]. Finally, after some remarks
one can provide on FES practical applications, a conclusion section will be given.

2 Function extended spaces (FES) of quantum chemical interest involving
density functions (DF) and shape functions (ShF)

2.1 Density and Shape functions

In order to define FES associated to quantum functions it is interesting to present the
notation which will be employed here. Then a few words about density functions (DF)
and shape functions (ShF) will be firstly given. In fact, a ShF: σ (r) is simply defined
from any arbitrary one-electron DF: ρ (r), according to the next algorithm, which can
be written in several ways, but here is chosen as follows:

∀ρ (r) : 〈ρ〉 =
∫

D

ρ (r) dr = N → σ (r) = N−1ρ (r) = 〈ρ〉−1 ρ (r) , (1)

where N is the number of electrons and the integral represented by the symbol 〈ρ〉 is
the Minkowski norm of the DF ρ (r).

Moreover it is easy to see ShF can be interpreted as the probability distribution
for the location of an electron in a volume element of the position space. ShF can be
generalized into volume functions within the scope of quantum similarity measures
[6], also they can be straightforwardly extended in connection with higher order DF.

2.2 DF and ShF extended spaces

The ordered couple made by a three dimensional Euclidean space position vectors
r, s ∈ E3 (R) and the value of a known DF or ShF at this point:

|p〉 = (r, ρ (s)) ∨ |q〉 = (r, σ (s)) ∈ C4 (R) (2)

can be considered as a new point structure associated with some four dimensional
real space: C4 (R), where the fourth coordinate corresponds to the function value at
the considered position provided by the first vector Euclidean part. The whole space

123



662 J Math Chem (2013) 51:660–671

C4 (R) can be thought as a hybrid Cartesian product of the three dimensional Euclid-
ean space R3 with an infinite dimensional functional space, containing real valued
functions of three real variables F∞ (R):

C4 (R) = E3 (R)× F∞ (R) .

Such composite sets possessing in addition a structure of vector space, as one can
sum and multiply by a scalar the elements of C4 (R) in the way which is explained
in detail below. These hybrid vector spaces will be called FES. In the next paragraph
discussion it is proved that arbitrary dimension similarly constructed mathematical
structures comply with the associated usual properties of the two basic operations
defining a vector space.

Moreover, both kinds of points |p〉 and |q〉, as defined in Eq. (2), are related by
means of the homothetic relationship between DF and ShF. Such a relationship can be
easily obtained by constructing a new four dimensional vector like: h = (1, N ), where
the Euclidean three dimensional unity vector is customarily defined as: 1 = (1, 1, 1).
Then, it is easy to see that the inward product of the vector h by the vector |q〉 pro-
duces the vector |p〉 : |p〉 = h∗|q〉, due to the definition of this kind of product1 (see
for example references [7–12]) and the relationship between DF and ShF (1). The
transformation involving vectors |p〉 and |q〉 becomes obviously reversible, because
using the vector: w = h[−1] = (

1, N−1
)
, then it can be also written: |q〉 = w∗|p〉.

The vector w acts as the inward inverse of h, that is: w∗h = h∗w = 1.

2.3 General function extended spaces

In fact, the four dimensional FES, as the previously described ones, can be also con-
structed when considering any well-behaved function of the three dimensional Euclid-
ean position coordinates, γ (s) say; then, in general the function extended vector space
C4 (R) can be supposedly made of vectors like:

|g〉 = (r, γ (s)) ∈ C4 (R).

Furthermore, the non-negative nature of the DF and the associated ShF, makes non-
negative the fourth vector coordinate, as it is defined in Eq. (2). However, with gen-
eral functions of arbitrary definition type this fourth coordinate positive definiteness
restriction has not to be compulsively present in FES. The only extra consideration
on the coordinate function behavior has to be associated to the fact that the associated
function must be continuous.

In addition, the position coordinates of FES do not need to be restrictedly associated
with three dimensional Euclidean spaces; but obviously enough, if the well-behaved

1 The inward product of two vectors of some vectorial space: a, b ∈ V , corresponds to another vector of
the same space: z = a∗b ∈ V . Not all vectors possess necessarily an inward inverse. However, there exists
the inward identity element, the unity vector: 1 ∈ V , for which: ∀a ∈ V : 1∗a = a∗1 = a. Thus, vector
spaces form a monoid under inward product and a commutative ring together with vector addition. The
inward product constitutes a generalization of the so-called Hadamard or Schur products.
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function terms in a given FES are constructed bearing n variables, the FES can be
defined as n + 1 dimensional as well.

3 A simple example

The simplest practical example one can think about FES is: C2 (R), where some of the
elements will be generically made of vectors which can be written as: |fd〉 = (x; f (x)),
where x ∈ R and f (x) is a continuous well-behaved real function. Constructed in this
way the vector |fd〉 is nothing else than the function f (x) map and it doesn’t include
all the two-dimensional C2 (R) space coordinate values.

Whenever the FES vector is written with the aid of two independent variables, using
another form like: |f〉 = (x1; f (x2)), then the whole C2 (R) space can be described.
In fact both vectors |fd〉 and |f〉 can be compared with an infinite dimensional matrix,
whose diagonal elements could be represented by the vector: |fd〉.

In order to illustrate this picture, a particular case of this very particular example
can be associated to the possibility to choose: f (x) = x . In this particular situation,
one can write: |fd〉 = (x; x) which produces the bisection of the positive and negative
quadrants. While the whole space can be, of course, written by the bi-dimensional
vector: |f〉 = (x1; x2). In this latest form, the vector |f〉 can be easily seen as an infi-
nite-dimensional two index hollow matrix, with indices which are coincident with the
real coordinates of the R2 Euclidian space.

4 Axiomatic definition of FES

The structure of a FES possesses several distinctive traits, when compared with the
usual vector space formalism. Here, the vector space definition field will be chosen
as the real field: R. Thus, as a first consideration, one must take into account that the
functions: γ , entering the general definition of FES must be taken as well behaved
real valued functions of n real variables, that is: γ : Rn → R.

Then, generally speaking, a FES will be defined as containing elements formed by
a couple constructed like a Cartesian product:

Cn+1 (R) = Rn × �∞ (R),

which can be made more explicit as a generalization of the previously defined bidi-
mensional diagonal point of view as follows:

∀r : |gd〉 = (r, γ (r)) ∈ Cn+1 (R)← {
γ (r) ∈ R← {∀r ∈ Rn ∧ γ (r) ∈ �∞ (R)

}}
.

However, written in this way this corresponds just to the map of a function of n
variables. To obtain a covering of all the Cn+1 (R) space there is need, as in the
two-dimensional case example, of two generating Euclidian n-dimensional vectors
{r; s}:
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|g〉 = (r, γ (s)) ∈ Cn+1 (R)← {
γ (s) ∈ R← {∀r, s ∈ Rn ∧ γ (s) ∈ �∞ (R)

}}
.

In fact, the vectors of the type |gd〉 correspond to the hyperdiagonal elements of some
hypermatrix indices properly defined by the vector: |g〉.

Vectors in a FES can be seen as Euclidian vectors extended with an extra Riemann-
ian coordinate.

4.1 Axioms

Then, one can propose the following axioms, which are necessary to properly build
any FES structure:

A) The addition over the FES can be defined as:

Assuming that: |g〉 = (r1, γ (r2)) and |h〉 = (r1, η (r2))

∀ {|g〉 , |h〉} ∈ Cn+1 : |g〉 + |h〉 = (r1 + r2, γ (s1)+ η (s2))

Then, one can also design the following axioms with respect to addition:

1A) Commutability:

∀ |g〉, |h〉 ∈ Cn+1 (R) :
|g〉 + |h〉=(r1 + r2, γ (s1)+ η (s2))=(r2 + r1, η (s2)+ γ (s1))=|h〉 + |g〉

2A) Associativity:

∀ |g〉, |h〉, |j〉 ∈ Cn+1 (R) : |g〉 + (|h〉 + |j〉) = (|g〉 + |h〉)+ |j〉

Because it can be written, for instance:

|g〉 + |h〉 + |j〉 = (r1 + r2 + r3, γ (s1)+ η (s2)+ μ (s3))

= (r1, γ (s1))+ (r2 + r3, η (s2)+ μ (s3))

3A) Existence of a neutral element with respect to the addition:

∃ |0〉 ∈ Cn+1 → ∀|g〉 ∈ Cn+1 : |0〉 + |g〉 = |g〉 + |0〉 = |g〉

Such an element has to be defined along the existence in the associated func-
tion space of the null function: ∃0 (s) ∈ F∞ (R)→ ∀s ∈ Rn : 0 (s) = 0, thus
forming a FES zero element like: |0〉 = (0, 0 (s)).

4A) Existence of a reciprocal element with respect to the addition for each FES
element:

∀ |g〉 ∈ Cn+1 : ∃ − |g〉 → |g〉 + (− |g〉) = |0〉

Construction of such an element can be achieved defining:
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∀ |g〉 = (r, γ (s)) ∈ Cn+1 : ∃ − |g〉 = − (r, γ (s)) = (−r,−γ (s)) ∈ Cn+1

In this way: ∀s : γ (s)+ (−γ (s)) = 0 (s).

B) The product of a vector by a scalar can be constructed in a similar manner as one
has proceeded with the addition:

∀λ ∈ R ∧ ∀ |g〉 = (r, γ (s)) ∈ Cn+1 : λ |g〉 = (λr, λγ (s))

and axiomatized accordingly as follows:

1B) Distributivity with respect scalar addition:

∀λ,μ ∈ R ∧ ∀ |g〉 ∈ Cn+1 : (λ+ μ) |g〉 = λ |g〉 + μ |g〉

2B) Distributivity with respect FES vector sum:

∀λ ∈ R ∧ ∀ |g〉 , |h〉 ∈ Cn+1 : λ (|g〉 + |h〉) = λ |g〉 + λ |h〉

3B) Associativity with respect the product of scalars:

∀λ,μ ∈ R ∧ ∀ |g〉 ∈ Cn+1 : λ (μ |g〉) = (λμ) |g〉

4B) Existence of a neutral element with respect of the product by a scalar:

∃1 ∈ R ∧ ∀ |g〉 ∈ Cn+1 → 1 |g〉 = |g〉

Therefore, the reciprocal element with respect to the addition in FES can be redefined
as it is also usual in vector spaces:− |g〉 = (−1) |g〉 .

Taking into account all these axioms as defined above, FES can be considered
as having a vector space structure possessing all the associated properties of such
constructs.

5 Special characteristics of FES

FES can be also associated to unconventional properties, which are not necessarily to
be found in usual vector spaces; for instance, just to mention some assorted examples
of them:

1) Because of the hybrid construction of FES, there could be defined Euclidian
zeros like: (0, γ (0)) ∈ Gn+1; of course, such elements cannot be confused with
the FES zero vector: |0〉. However, for the same FES hybrid definition reason,
there can also exist function extended zeros like: (r0, γ (s0)) = (r0, 0), obviously
appearing whenever: ∃s0 = 0 : γ (s0) = 0.
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2) It can be considered a Euclidian addition, which implies the Euclidian part of
any FES vector and which can be defined as:

(r1, γ (s)) +̇ (r2, γ (s)) = (r1 + r2, γ (s))

3) In the same way one can define a function extended vector addition:

(r, γ (s)) +̈ (r, η (s)) = (r, γ (s)+ η (s))

4) Several kinds of Banach and pre-Hilbert FES can be easily defined:
4.1) Provided that the functions of the space F∞ (R) are square summable, that

is: ∀γ (s) ∈ F∞ (R) : ∃ ∫
D
|γ (s)|2ds ∈ R+, then an Euclidian norm of a

FES vector can be easily constructed as:

〈g|g〉 = |r|2 + 〈γ |γ 〉 = |r|2 +
∫

D

|γ (s)|2ds.

4.2) A scalar product can be also easily defined between two FES elements:

〈g|h〉 = 〈r1|r2〉 +
∫

D

∫

D

γ (s1) δ (s1 − s2) η (s2) ds1ds2

However, a variant associated to a Euclidian norm and a function extended
scalar product, can be also contemplated for some specific kind of FES
vectors:

〈(r, γ (s))|(r, η (s))〉 = |r|2 +
∫

D

γ (s) η (s) ds.

One can grasp in this way how rich in operation possibilities are FES when
compared with classical vector spaces.

6 Gradient extended spaces (GES)

In order to show other possible forms of the previously defined FES, one can recall a
recent study about the possibility to use the DF gradients as some kind of molecular
Riemannian coordinates [13]. Also it is worthwhile to remember previous work on
the use of DF derivatives in quantum similarity theory and applications [14].

The gradient of a DF will be noted by means of the following conventions:

〈d| = 〈∂rρ (r)| = (
∂xρ (r) ; ∂yρ (r) ; ∂zρ (r)

)
.

123



J Math Chem (2013) 51:660–671 667

The vector 〈d| can be trivially written by means of the operator acting on the DF, for
which one can choose any of the notations like:

∇T ρ (r) = 〈∂r| ρ (r) = (
∂x ; ∂y; ∂z

)
ρ (r) .

This formalism allows writing a four dimensional FES vector with the generic form
described before, where the coordinate Euclidian part is made of the gradient elements
computed at the point r, as:

(〈d| ; ρ (s)) = 〈∂rρ (r) ; ρ (s)| = (
∂xρ (r) ; ∂yρ (r) ; ∂zρ (r) ; ρ (s)

)

In turn, the diagonal part of this particular FES can be rewritten using several alterna-
tive notations with an extended operator vector definition:


T [ρ (r)] =
(
∇T ; 1

)
ρ (r) = 〈∂r; 1| ρ (r) = (

∂x ; ∂y; ∂z; 1
)
ρ (r) . (3)

Such a process can be structured in general for an arbitrary dimension and then applied
to any well behaved function of an arbitrary number of variables. Such functions must
possess, at least, adequate continuous first partial derivatives. The appropriate defi-
nition of such vector is just a matter to define an extended operator vector over the
complete number of involved variables. Such a FES construct can be called gradient
extended spaces (GES).

6.1 A spherical Gaussian function example

As an illustrative example of GES, it is interesting to study the structure this Riemann
extended vector acquires, when applied to a spherical Gaussian function of an arbitrary
number of variables n, that is: r ∈ Rn . Such Minkowski normalized function can be
defined as:

γ (α |r ) =
(α

π

) n
2

exp
(
−α |r|2

)
. (4)

In this simple example the gradient elements can be also written as:

∂rγ (α |r ) = −2α
(α

π

) n
2

exp
(
−α |r|2

)
r = −2αγ (α |r ) r,

therefore the diagonal part of the extended gradient vector, defined like in Eq. (3), can
be written in this case with the form:

〈d (r)| = (∂rγ (α |r ) ; γ (α |r )) = (−2αr; 1) γ (α |r ) ,

which yields an extended vector of the type: (−2αr; 1) with a constant unit in the
function position. The original Gaussian function acts as a variable scalar factor of
any vector in the position space. It is interesting to note that, at the extremum: r = 0,
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the gradient is null and the GES vector can be written at this position as an Euclidian
zero FES vector:

〈d (0)| = (∂rγ (α |0 ) ; γ (α |0 )) = (0; 1) γ (α |0 ) =
(α

π

) n
2
(0; 1) .

6.2 Sobolev spaces and gradient extended spaces

For adequate functions, the GES can generate an appropriate Euclidian norm, which
can be written as:

∀r, s : 〈g|=(〈d| γ (r) ; γ (s)) ∈ Gn+1 → 〈g|g〉=
n∑

I=1

∫

D

|∂I γ (r)|2dr+
∫

D

|γ (s)|2ds

Acquiring in this way the structure of a Sobolev space [15]. Sobolev spaces have
been employed in order to describe in a new way Schrödinger equation [16,17] and
to generalize several aspects of molecular similarity measures [18].

7 Stereographic projections in FES and a holographic general functions
theorem (HGFT)

Function extended spaces like C4 (R) can be considered as a particular form of a
general Cn+1 (R) vectorial structure, which can be constructed in turn as the hybrid
Cartesian product of an Euclidian n-dimensional space with a function space contain-
ing vectors, constructed by functions of n-dimensional variables.

Thus, it is elementary to generalize stereographic projections from a function
extended space of (n + 1) dimensions, using the same symbols as the used ones
for FES in the stereographic projection equations, taking into account that the original
position vectors belong to some Euclidean n-dimensional space, that is: r ∈ En (R).

It is well-known [19–21] that the stereographic projection of a point vector belong-
ing to a diagonal vector set, defined into the FES and written as: p = (r, γ (r)) ∈
Cn+1 (R), can be associated to a new scaled vector:

PS (p) = P = (R − γ (r))−1 r ∈ En (5)

of the Euclidean space, where R is a parameter, which usually is chosen as the unit
and can be defined as the radius of the sphere:

|r|2 + |γ (r)|2 = R2. (6)

Therefore the stereographic projection can be written as:

P = (R − γ (r))−1 r = λ−1r =
{
λ−1rI |I = 1, n

}
= {PI |I = 1, n } (7)
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and the expression can be reversed, that is: one can try to obtain the original coor-
dinates from the stereographic ones by using Eq. (6) and the inverse relationship of
Eq. (7), which can be written as:

r = λP = (R − γ (r)) P, (8)

thus, from knowing the stereographic projected coordinates one can recover the initial
coordinates following the simple general algorithm:

∀I = 1, n : rI = 2R PI

|P|2 + 1
∧ ρ (r) = R

(|P|2 − 1
)

|P|2 + 1
, (9)

where the Euclidean norm of the projected position vector written in the usual way as:

|P|2 = 〈P∗P〉 =
n∑

I=1

P2
I

has an obvious fundamental role.
Equations (7), (8) and (9) constitute quite a general framework, which permits to

state that: “every well behaved function of an arbitrary number of variables n can be
subject to a reversible stereographic projection into the surface of an n-dimensional
sphere of arbitrary radius”.

The sentence above declared is nothing else than the enunciation of a holographic
general function theorem (HGFT), which holds for well-behaved functions of any
number of variables, in particular including DF and ShF of first and higher arbitrary
orders.

8 Some remarks on stereographic projection in FES

1) A possible problem, which can be encountered when applying Eq. (7), is asso-
ciated with the factor: λ−1 = (R − γ (r))−1, which under determinate circum-
stances can introduce the presence of an infinite value into the stereographic
transformation grid. This possibility has to be taken into account when program-
ming the stereographic projection and within subsequent practical computations.
However, theoretically one can invoke the Alexandrov one-point compactifica-
tion, as Mezey [3] did when establishing the HEDT. In fact, in the present case one
can avoid computationally the possible infinite values by choosing an appropriate
radius R of the sphere (6), which can provide the following property fulfillment:
∀r : R − γ (r) = 0.
This becomes a sensitive procedure when full EMPs are considered, as they
become infinite at atomic positions. One can observe EMP stereographic projec-
tions from the point of view of any atom in a molecule, provided that the sphere
centered at this atom do not includes another atom lying on the spherical surface.
Such a caution will prevent the issue of representing infinite function values in a
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given EMP snapshot. In a similar way, recently the present authors have devel-
oped based on previous EMP experience [22] the softened EMP (SEMP) [23],
where the generated EMP using a hard original point charge, has been simply
substituted by a soft density charge distribution, permitting to avoid the infinity
poles at the atomic positions, thus easing the automatic drawing, while preserving
the original shape of such an interesting molecular feature.

2) The stereographic transformation can be used to reduce an initial problem from
Cn+1 to En as explained, but one can iterate further on, for instance from En to
En−1 and so on, taking into account that the stereographic projection sequence
is reversible from lower dimensions to upper ones by the provided algorithm in
Eq. (9).

3) Equation (6) defining a sphere in Cn+1 can be easily transformed into a unit radius
structure, as one can also write:

∣∣∣R−1r
∣∣∣2 +

∣∣∣R−1γ (r)
∣∣∣2 = 1. (10)

However, this result permits to take into account the feasibility of stereographic
projection not only into a sphere, as it has been previously described, but into
a spheroid, whose principal axis can be gathered into a vector of Cn+1, with a
constant in the function position, like:

A = {aI , α |I = 1, n } = (a, α) (11)

and possessing an inward inverse, which can be defined at once as:

A[−1] =
{

a−1
I , α−1 |I = 1, n + 1

}
=

(
a[−1], α−1

)
,

and which can be used over the function extended vector p in order to define the
general spheroidal structure:

q = A[−1]p =
(

a[−1]r, α−1γ (r)
)
→ |q|2 =

n∑
I=1

(
rI

aI

)2

+
(

γ (r)
α

)2

= 1.

The unit spherical form as shown in Eq. (10) corresponds to the well-defined
vector: A = R (1n, 1) = R1n+1.

9 Conclusions

FES and well-known stereographic projections of multivariate functions can be con-
sidered as the mathematical basis to represent in a graphical way such mathematical
objects in general. Particularly, when associated to quantum mechanical submicro-
scopic systems they can constitute quite adequate means to dynamically visualize
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relevant quantum molecular functions. Finally both FES and stereographic represen-
tations can be the basis to formalize a general holographic theorem, involving any
kind of multivariate function.
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